
Acta Cryst. (2007). A63, 257–265 doi:10.1107/S0108767307002802 257

research papers

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 1 December 2006

Accepted 18 January 2007

# 2007 International Union of Crystallography

Printed in Singapore – all rights reserved

The mean-square Friedel intensity difference in P1
with a centrosymmetric substructure

H. D. Flacka* and U. Shmuelib

aLaboratoire de Cristallographie, University of Geneva, Switzerland, and bSchool of Chemistry, Tel

Aviv University, Israel. Correspondence e-mail: howard.flack@cryst.unige.ch

For non-centrosymmetric structures in space group P1 containing a centrosym-

metric substructure, analytical expressions have been obtained for various

functions of the diffraction intensity of Friedel opposites. These functions are

the average intensity of Friedel opposites, the mean difference in intensity of

Friedel opposites and the mean-square difference in intensity of Friedel

opposites. A Bijvoet intensity ratio is defined for the evaluation of resonant-

scattering effects in non-centrosymmetric and pseudo-centrosymmetric struc-

tures. Analysis of these expressions confirms that both resonant and non-

resonant atoms are necessary to produce differences in intensity between

Friedel opposites and also shows that in some circumstances atoms may lie on a

centrosymmetric substructure without diminishing the Bijvoet intensity ratio.

The effects of the real component of resonant scattering, of the variation of the

scattering factors with sin �/�, of isotropic atomic displacement parameters, of

a crystal twinned by inversion, of atoms in special positions and of weak

reflections are considered. Software is available for the evaluation of the Bijvoet

intensity ratio.

1. Introduction

It is useful to be able to make a priori estimates of the average

intensity difference between Friedel opposites prior to

experimentation. Such estimates may be used to select the

most suitable compound or derivative and to optimize the

choice of wavelength of the radiation. In the field of biological

crystallography, one wishes to know whether it is in principle

possible to solve the crystal structure using techniques such as

MAD and SAD especially if it is intended to rely only on the

resonant-scattering (anomalous diffusion) effects from the S

atoms in the native protein. The article of Dauter (2006) treats

the practical applications of such matters in protein crystal-

lography where often the elemental composition of a salt-

soaked protein crystal is not known. In the area of chemical

and organo-metallic crystallography, it is the question of the

possibility of absolute-configuration determination which is

the driving force for the need for an a priori estimate. Flack et

al. (2006) have found for a limited class of compounds that the

standard uncertainty of the Flack (1983) parameter obtained

by least-squares refinement shows a clear dependence on the

estimate of hj�Fji=hFi given by a formula of Girard et al.

(2003).

Various formulae for estimating hj�Fji=hFi of Friedel

opposites may be found in the literature. All derivations are

based on the approach of Crick & Magdoff (1956) for the

estimation of mean structure-factor-amplitude differences

between an isomorphous derivative and a native protein.

Moreover, available formulae are all based on the hypothesis

of a non-centrosymmetric crystal structure without pseudo-

symmetry containing few types of resonant scatterers in a sea

of non-resonant scatterers. In particular, Hendrikson & Teeter

(1981) gave an approximate formula for a single resonant

scatterer in a molecule as part of their determination of the

structure of crambin using resonant-scattering techniques.

Olczak et al. (2003) give a formula applicable to two kinds of

resonant scatterer, and Weiss et al. (2001) and Girard et al.

(2003) extended the estimate to include any number of reso-

nant scatterers. Shen et al. (2003) treat differences in atomic

displacement parameters between heavy and light atoms, and

also show how allowance may be made for certain structural

features (e.g. disulfide bridge or metal cluster) in the resonant

part of the structure. A practical application to phasing

protein structures by way of Ta6Br12 clusters is presented by

Banumathi et al. (2003). Zwart (2005) gives a thorough review

of resonant signal indicators in protein crystallography and

provides a Monte Carlo procedure for their estimation.

Although the formula of Girard et al. (2003) gave significant

results in the study of Flack et al. (2006), it is apparent that it

has shortcomings if applied outside its intended domain of

application. In particular, it gives the same estimate of mean

Friedel difference whether the crystal structure is non-

centrosymmetric, centrosymmetric or pseudo-centrosym-

metric. Also it may give large estimates of Friedel differences

where in practice none exist. For example, in the spherical-

atom approximation there is no difference in intensity

between Friedel opposites for elemental Se in its helical chiral

crystal structure. Consequently, we decided to reanalyse the



intensity differences between Friedel opposites from first

principles with as few approximations as possible for the case

of a non-centrosymmetric structure in space group P1 but

containing a centrosymmetric substructure. All atoms present

in the compound are allowed to display resonant scattering.

2. Analysis

The unit cell of the crystal contains N atoms, of which M atoms

are arranged non-centrosymmetrically, Q are arranged

centrosymmetrically with N = Q + M, the centre of symmetry

applicable to the Q atoms being placed at the origin of a

primitive basis. We choose to number the atoms starting from

the Q centrosymmetrically arranged atoms and finishing with

the M non-centrosymmetrical ones. Thus atoms 1 to Q are

arranged centrosymmetrically and atoms Q + 1 to N are

arranged non-centrosymmetrically. Moreover, atoms i and

i + Q/2 for 1 � i � Q/2 are centrosymmetrically related. Let xj

be the vector of coordinates of the jth atom. Let the real non-

resonant contribution to the scattering factor of the jth atom

be fj with the imaginary component of the resonant scattering

being f 00j . In order to concentrate on the essentials of the

analysis, we initially make several simplifying assumptions.

(i) The real component of the resonant scattering is ignored.

(ii) All theory and calculations are undertaken in the

spherical-atom approximation at sin �/� = 0, where for X-ray

scattering fj ¼ Zj the atomic number of the jth atom.

(iii) The structure is not disordered and all site occupation

factors are unity.

(iv) The crystal is monodomain and not twinned by inver-

sion.

(v) All the atoms are located in general positions, i.e. no

atom is located on a centre of symmetry of the Q atoms.

The analysis is completed in x4 by consideration of the ways

to remove these simplifications.

We write the complex structure factor F(h) of reflection h as

F(h) = FC(h) + FN(h), where FC(h) and FN(h) represent

respectively the contributions from the centrosymmetric and

non-centrosymmetric substructures,

FCðhÞ ¼ 2
PQ=2

j¼1

ðfj þ if 00j Þ cosð2�h � xjÞ;

FNðhÞ ¼
PN

j¼Qþ1

ðfj þ if 00j Þ½cosð2�h � xjÞ þ i sinð2�h � xjÞ�:

Setting cj ¼ cosð2�h � xjÞ, sj ¼ sinð2�h � xjÞ,

CC ¼ 2
PQ=2

j¼1

fjcj; CN ¼
PN

j¼Qþ1

fjcj; C ¼ CC þ CN ¼
PN
j¼1

fjcj;

C00C ¼ 2
PQ=2

j¼1

f 00j cj; C00N ¼
PN

j¼Qþ1

f 00j cj; C00 ¼ C00C þ C00N ¼
PN
j¼1

f 00j cj;

S ¼
PN

j¼Qþ1

fjsj; S00 ¼
PN

j¼Qþ1

f 00j sj

and expanding gives

FðhÞ ¼ CC þ CN þ iC00C þ iC00N þ iS� S00 ¼ C þ iC00 þ iS� S00:

ð1Þ

In the structure factor of the antireflection �h, the sine terms

change sign giving Fð�hÞ ¼ C þ iC00 � iSþ S00. In the model

of a monodomain single crystal, the mean intensity of Friedel

opposites h and �h is given by

AðhÞ ¼ 1
2 jFðhÞj

2 þ jFð�hÞj2ð Þ

¼ 1
2 ½ðC � S00Þ2 þ ðC00 þ SÞ2� þ 1

2 ½ðC þ S00Þ2 þ ðC00 � SÞ2�

¼ C2
þ S2
þ C002 þ S002; ð2Þ

and the difference in intensity between Friedel opposites h

and �h is given by

DðhÞ ¼ jFðhÞj2 � jFð�hÞj2 ¼ 4ðC00S� CS00Þ: ð3Þ

2.1. Average values

We now proceed to the calculation of mean values

hAi; hDi; hD2i of AðhÞ;DðhÞ;D2ðhÞ, respectively, the mean

being taken assuming uniform and uncorrelated probability

density functions of the h � xj. This implies either fixed hkl and

uniformly distributed atomic coordinates or fixed atomic

coordinates and a large number of reflections.

From (1) and (2), the average intensity of Friedel opposites

is given by

hAi ¼ hAðhÞi ¼ hC2i þ hS2i þ hC002i þ hS002i

¼ hC2
Ci þ hC

2
Ni þ 2hCCCNi þ hS

2
i þ hC002C i

þ hC002N i þ 2hC00CC00Ni þ hS
002i: ð4Þ

The details of the derivation of the mean values are given in

Appendix A and leads to a result one would anticipate from

Wilson’s statistics:

hAi ¼
PN
j¼1

f 2
j þ

PN
j¼1

f 002j : ð5Þ

From (3), and noting that DðhÞ ¼ �Dð�hÞ, we show it is

clear that hDi ¼ 0. Also from (3), the squared intensity

difference between Friedel opposites is given by

D2ðhÞ ¼ 16ðC2S002 þ S2C002 � 2CSC00S00Þ, and from (1)

1
16 hD

2i ¼ 1
16 hD

2ðhÞi

¼ hC2
CS002i þ hC2

NS002i þ 2hCCCNS002i þ hS2C002C i

þ hS2C002N i þ 2hS2C00CC00Ni � 2hCCSC00CS00i

� 2hCNSC00NS00i � 2hCCSC00NS00i � 2hCNSC00CS00i: ð6Þ

The details of the derivation of the mean values are given in

Appendix A and leads to

hD2
i ¼ 4

PN
j¼1

PN
l¼1

ð fj f 00l � fl f 00j Þ
2 � 4

PQ
j¼1

PQ
l¼1

ð fj f 00l � fl f 00j Þ
2: ð7Þ

Appendix B presents the derivation of hAzi and hD2
zi, similar

to hAi and hD2i, but based on normalized rather than ordinary

structure factors.
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2.2. Bijvoet intensity ratio

The formula of Girard et al. (2003) for the estimation of

Friedel-difference effects resulted from a derivation of

hj�Fji=hFi. We can proceed in the same manner to obtain a

value based on intensities rather than structure-factor ampli-

tudes by using (5) and (7):

� ¼ hD2i
1=2=hAi

¼ 2
PN
j¼1

PN
l¼1

ð fj f 00l � fl f 00j Þ
2 �

PQ
j¼1

PQ
l¼1

ð fj f 00l � fl f 00j Þ
2

" #1=2

�
PN
j¼1

f 2
j þ

PN
j¼1

f 002j

 !�1

: ð8Þ

Appendix B shows that for �z, based on normalized rather

than ordinary structure factors, �z ¼ hD
2
zi

1=2 ¼ �, implying

that � is already correctly normalized.

3. Behaviour of mean-square Friedel intensity
difference and Bijvoet intensity ratio

Equation (7) is the principal result of this analysis. It is an

exact form of two previous approximate analyses. Flack &

Bernardinelli (1999) showed that both resonant and non-

resonant atoms were necessary for giving intensity differences

between Friedel opposites. Further, Flack et al. (2006)

undertook a preliminary analysis of the effect of a centro-

symmetric substructure on Friedel differences. Equation (7) of

Olczak et al. (2003), applicable to two kinds of resonant

scatterer, is the only one known to us in the literature

containing the all important difference factor ð fj f 00l � fl f 00j Þ.

Taking (7) as written, the first term corresponds to having

all atoms arranged non-centrosymmetrically and the second

term reduces the value of hD2i for those atoms which are

arranged centrosymmetrically. From (7), it is clear that the

largest value is obtained when all the atoms are arranged non-

centrosymmetrically, i.e. M = N, Q = 0, and a zero value applies

when all atoms are arranged centrosymmetrically, i.e. M = 0,

Q = N. The form of (7) with two sums of quadratic terms

ensures that a partially centrosymmetric structure will take a

value of hD2i intermediate between that of an entirely non-

centrosymmetric structure and that of a centrosymmetric

structure of the same chemical composition.

If all atoms are of the same type, i.e. the same chemical

element, all terms ð fj f 00l � fl f 00j Þ ¼ 0 in (7) and (8), and hD2i is

zero in the spherical-atom approximation regardless of

whether the structure is centrosymmetric or non-centrosym-

metric. This corresponds to the results of McIntyre (1978),

who carried out a full analysis of the Friedel intensity differ-

ences in a chiral crystal structure of elemental Se. In the case

of the crystal structure of a chemical element, the form of the

terms ðfj f 00l � fl f 00j Þ does not allow any diffraction contrast

between atoms in the intensity difference between Friedel

opposites despite a large imaginary resonant-scattering

contribution as in the case of Se.

It is instructive to write the principal factors in (7) as

ð fj f 00l � fl f 00j Þ ¼ fj flð f
00
l =fl � f 00j =fjÞ, from which it can be seen

that Friedel intensity differences are conditioned by differ-

ences between the imaginary parts of the resonant scattering

of an atom relative to their own non-resonant scattering. Thus

in a very real way H atoms help to augment the difference

in intensity of Friedel opposites although the imaginary

component of their resonant scattering contribution is zero.

As an example, let us now see how the intensity differences

between Friedel opposites appear in the case of a crystal

structure containing two atom types. As an example, we use

the hydrocarbon decane (C10H22) studied with Cu K� radia-

tion. 104� in (8) takes a value of zero if only the C atoms or

only the H atoms are taken into consideration. It also takes a

value of zero if all atoms are arranged centrosymmetrically.

With all atoms in a non-centrosymmetric arrangement, the

value of 104� is 10 and it remains at 10 if either any or all of the

C atoms or any or all of the H atoms are placed on a

centrosymmetric substructure. In the general case of T atom

types, the diffraction contrast is undiminished if any or all of

the atoms of one type are arranged centrosymmetrically.

As a further example, take the case of the compound

of composition C5H11Cl2NO2PtS whose CSD refcode is

OCARAL (Llorca et al., 2001). This was one of those pseudo-

centrosymmetric structures used in the study of Flack et al.

(2006) on centrosymmetric and pseudo-centrosymmetric

structures refined as being non-centrosymmetric. Its crystal

structure was determined to be in space group P1 with Z = 2

and gave a PLATON (Spek, 2003) fit parameter for space

group P�11 of 100% (see Flack et al., 2006, for details). The

structure was deemed to be non-centrosymmetric on account

of the proven enantiopurity of the bulk compound, there

being just one chiral C centre in the molecule. The value of

104� with all atoms being arranged non-centrosymmetrically

is 1054. Although the molecule has no symmetry of its own,

in the crystal structure two molecules are arranged

approximately centrosymmetrically. On taking a worst-case

situation that all atoms apart from the chiral C atoms in the

two molecules of the asymmetric unit are arranged centro-

symmetrically, the value of 104� drops to 193. This is a

considerable reduction but nevertheless 104� is still appre-

ciable. On carrying out the superposition of one molecule of

the asymmetric unit with the inverted image of the other, a

more reasonable approximation to the number of non-

centrosymmetric atoms is C2H7 giving 104� = 286 or C2H7N

giving 104� = 364. Another approach to the symmetry of

OCARAL could be intensity statistics. Wilson’s (1949)

statistics would most probably indicate that OCARAL is

non-centrosymmetric (e.g. the experimental fourth moment of

|E| would be closer to 2 than to 3). However, the presence of

the outstandingly heavy Pt atom would invalidate this

statistic (e.g. Shmueli & Wilson, 1981) and it is interesting to

find out if the exact symmetry- and composition-dependent

probability density functions (p.d.f.s) of |E| (Shmueli et al.,

1984) would show the correct symmetry. There is a related

example in the latter reference which supports such an

application.
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4. Further analysis

We now return to the extension of (7) in terms of atom types,

and to allow for the real component of resonant scattering, for

the variation of scattering factors with sin �/�, for isotropic

atomic displacement parameters, for atomic site occupation

parameters, for crystals twinned by inversion and for atoms

occupying special positions.

4.1. Mean-square Friedel intensity difference in terms of
atom types

Equation (7) for hD2i is given in terms of sums over the

individual atoms whereas sums over atom types (chemical

elements) would provide a useful simplification. So suppose

that Na
j is the total number of atoms of type j, Qa

j is the number

of centrosymmetrically arranged atoms of type j and T is the

number of atom types in the structure. By substitution in (7),

hD2
i ¼ 4

PT
j¼1

PT
l¼1

Na
j Na

l ð fj f 00l � fl f 00j Þ
2

� 4
XT

j¼1

XT

l¼1

Qa
j Qa

l ðfj f 00l � fl f 00j Þ
2: ð9Þ

On expanding the quadratic terms in (9) and rearranging, one

obtains

hD2i ¼ 4
PT
j¼1

Yj � 4
PT
j¼1

Vj;

Yj ¼ ðN
a
j f 2

j Þ
PT
l¼1

Na
l f 002l

� 2ðNa
j fj f 00j Þ

PT
l¼1

Na
l fl f 00l þ ðN

a
j f 002j Þ

PT
l¼1

Na
l f 2

l ;

Vj ¼ ðQ
a
j f 2

j Þ
PT
l¼1

Qa
l f 002l

� 2ðQa
j fj f 00j Þ

PT
l¼1

Qa
l fl f 00l þ ðQ

a
j f 002j Þ

PT
l¼1

Qa
l f 2

l : ð10Þ

4.2. Real component of resonant scattering

Equations (7) and (8) may be readily adapted to make

allowance for the effect of f 0 the real part of the resonant-

scattering contribution. This is achieved by replacing fj by

ð fj þ f 0j Þ. In general, f 0 is negative and only a few percent of f,

so the terms ð fj f 00l � fl f 00j Þ in (7) and (8) will diminish some-

what when f 0 is included, as will the denominator in (8).

4.3. Dependence of scattering factors on sin h/k

The real and imaginary components of the resonant scat-

tering, f 0 and f 00, are independent of sin �/� whereas the

non-resonant atomic scattering factors are monotonically

decreasing functions of sin �/�. A crude approximation to

the non-resonant atomic scattering factors is to take fj =

ZjG(sin �/�), where G is a monotonically decreasing function

of sin �/� having G(0) = 1, i.e. all atomic scattering factors have

the same shape but with values scaled to the atomic number of

the chemical element. Inspection of (8) shows that � varies

approximately as 1/G. Consequently, a general trend is for a

monotonic increase in � as sin �/� increases. For practical

considerations on many of these points, the reader is referred

to Dauter (2006).

It is of course not difficult to take explicit account of the

sin �/� variation of the non-resonant atomic scattering factors

by using either a five-term or a seven-term parametric

representation and evaluating � at a series of values of sin �/�.

If available, Debye–Waller factors could also be included as

described in x4.4 as these also have a contribution which varies

with sin �/�. For hD2
zi and �z, similar to hD2i and � but based

on normalized rather than ordinary structure factors,

Appendix B shows that �z ¼ hD
2
zi

1=2 ¼ �. Clearly these three

functions depend more weakly on sin �/� than does hD2i.

4.4. Isotropic atomic displacements

In the approximation of an overall isotropic atomic

displacement parameter, a Debye–Waller factor t =

exp{�8�2U sin2�/�2} premultiplies every fj and f 00j and t cancels

out in the expression for � in (8). Consequently, an overall

isotropic atomic displacement has no effect on the variation of

� with sin �/�.

One may also allow for individual isotropic atomic dis-

placements without difficulty. To achieve this it is sufficient in

(7) and (8) to replace each fj and f 00j by tj fj and tj f 00j , respec-

tively, where tj = exp{�8�2Uj sin2�/�2} is the individual

Debye–Waller factor and Uj is the isotropic atomic displace-

ment parameter for the jth atom. If this substitution is carried

out in (7) and (8), each factor ð fj f 00l � fl f 00j Þ becomes

tjtlð fj f 00l � fl f 00j Þ. So although the contrast factor ð fj f 00l � fl f 00j Þ is

unaffected by isotropic atomic displacement parameters, the

prefactor tjtl allows the contribution of certain pairs of atoms

to be modified. As heavy atoms tend to have smaller atomic

displacement parameters than light atoms, their contribution

to the contrast terms in (7) and (8) is upweighted with respect

to the light atoms. As before, the effect will be greatest at

larger values of sin �/�. This analysis is in agreement with

those of Dauter (2006) and Shen et al. (2003).

4.5. Atomic site occupation parameters

In like manner to the analysis of atomic displacement

parameters, the effect of atomic site occupation parameters

may be taken into account in (7) and (8) by replacing

each fj and f 00j by pj fj and pj f 00j , respectively, where pj is

the site occupation parameter for the jth atom. So

with this substitution carried out, the first term in equation

(7) hD2i1 ¼ 4
PN

j¼1

PN
l¼1 ð fj f 00l � fl f 00j Þ

2 becomes hD2i1 ¼

4
PN

j¼1

PN
l¼1 p2

j p2
l ð fj f 00l � fl f 00j Þ

2. It is thus easy to see that the

contribution to hD2i of sites with partial atomic occupation is

diminished with respect to full occupation of the site. As in

x4.1, it is of particular interest to express hD2i in terms of atom

types in order to understand how arranging the same total

number of atoms of each type over sites with partial occupa-

tion modifies (7) and (8). As in x4.1, let Na
j be the total number

of atoms of type j and T be the number of atom types in the
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structure. We also need to define Ns
j as the total number of

sites occupied by atoms of type j and double index the atomic

site occupation parameters so pij refers to site j ¼ 1; . . . ;Ns
i

occupied by an atom of type i ¼ 1; . . . ;T. It follows thatPNs
i

j¼1 pij ¼ Na
i and in the expression for hD2i1 each sum over

all atomic sites
PN

j¼1 may be replaced by the double

summation over atom types and sites of each atom type,PT
i¼1

PNs
i

j¼1 . Substitution and rearrangement leads to

hD2
i1 ¼ 4

XT

j¼1

XT

l¼1

Na
j Na

l ð fj f 00l � fl f 00j Þ
2
XNs

j

i¼1

p2
ji

Na
j

XNs
l

k¼1

p2
lk

Na
l

:

Let us examine one of the two factors like
PNs

j

i¼1 p2
ji=Na

j

remembering that
PNs

j

i¼1 pji ¼ Na
j . The best case occurs when

all sites of atom type j are fully occupied giving pji ¼ 1 for

i ¼ 1; . . . ;Ns
j , Ns

j ¼ Na
j and

PNs
j

i¼1ðp
2
ji=Na

j Þ ¼ 1. Clearly, if all

atomic sites of all atomic types are fully occupied, the same

result is obtained for hD2i1 and by extension for hD2i as in

x4.1. It is possible to show that the worst case occurs for

Ns
j >Na

j when all sites of atom type j are equally occupied with

pji ¼ Na
j =Ns

j for i ¼ 1; . . . ;Ns
j so

PNs
j

i¼1 p2
ji=Na

j ¼ Na
j =Ns

j ,

hD2i ¼ 4
XT

j¼1

XT

l¼1

�
Na

j

Ns
j

�
Na

l

Ns
l

� �
Na

j Na
l ð fj f 00l � fl f 00j Þ

2

� 4
XT

j¼1

XT

l¼1

Qa
j

Qs
j

 !
Qa

l

Qs
l

� �
Qa

j Qa
l ð fj f 00l � fl f 00j Þ

2:

In fact, the latter equation covers both the best case when

Ns
j ¼ Na

j and the worst case which can be calculated as in x4.1

by diminishing Na
j by a factor Na

j =Ns
j < 1 and likewise for Q.

Such a reduction of the mean-square Friedel intensity differ-

ence resulting from disorder in atomic positions is in agree-

ment with the observations of Olczak et al. (2003, 2007).

4.6. Crystal twinned by inversion

In a crystal twinned by inversion, the intensities of the

reflection h and its Friedel opposite �h are given by

IðhÞ ¼ ð1� xÞjFðhÞj2 þ xjFð�hÞj2 and Ið�hÞ ¼ xjFðhÞj2 þ

ð1� xÞjFð�hÞj2. So the average intensity of a pair of Friedel

opposites AðhÞ ¼ 1
2IðhÞ þ

1
2Ið�hÞ ¼ 1

2½jFðhÞj
2 þ jFð�hÞj2� is

unchanged from that of the untwinned crystal given by (2).

However, for the Friedel difference DðhÞ ¼ IðhÞ � Ið�hÞ ¼

ð1� 2xÞ½jFðhÞj2 � jFð�hÞj2�, a prefactor (1 � 2x) multiplies

the value of an untwinned crystal given by (3). As 0 � x � 1,

|1 � 2x| takes its largest value of unity when x = 0 or x = 1 for

an untwinned crystal. The corresponding values of hD2i and �
are given by (7) and (8), respectively, for the untwinned

crystal. |1 � 2x| takes its smallest value of zero when x = 0.5 for

a crystal composed of equal amounts of the two domain states

which are inversion images one of another. The corresponding

values of hD2i and � are also zero, confirming that a crystal

twinned by inversion in the ratio 50:50 shows no difference in

intensity between Friedel opposites.

4.7. Atoms in special positions

The analysis in the following subsections proves that no

modification of (7) and any equation resulting from it is

necessary to allow atoms to occupy special positions in the

current model. Although there are no special positions in

space group P1, its centrosymmetric supergroup P�11 on a

primitive basis with a centre of symmetry at the origin has

only centres of symmetry as special positions with coordinates

m/2, n/2, p/2, where m, n and p are integers, 0 � m; n; p � 1.

As the coordinates of these special positions are fixed,

the calculation of the average values of cj and its powers

is taken over reflection indices h. Here, ci ¼ cosð2�h � xiÞ ¼

cosf�ðhmi þ kni þ lpiÞg ¼ �1, the sign depending on the

parity of hmi þ kni þ lpi. Consequently, c2
j ¼ 1; hc2

j i ¼ 1,

whereas cicj ¼ �1, i 6¼ j, the sign changing regularly as h, k, l

are increased by unity, implying that hcicji � 0; i 6¼ j. The

definitions of M, N and Q as given in x2 are unchanged but we

also define W to be the number of atoms in the unit cell sitting

on special positions of site symmetry �11 and these W atoms are

put at the end of the list of centrosymmetrically arranged

atoms. Thus, atoms 1 to Q are arranged centrosymmetrically,

of which atoms 1 to Q �W are atoms arranged centrosym-

metrically in pairs, Q �W + 1 to Q are atoms located on the

centres of symmetry and atoms Q + 1 to N are arranged non-

centrosymmetrically. We are of course aware of the fact that in

this case setting hcicji � 0, i 6¼ j, is possibly a serious

approximation because of the strong rational dependence of

the coordinates of the centres of symmetry. However, this

seems to be the closest attainable description of hD2i in the

presence of atoms in the above special positions. On the other

hand, the average hc2
j i ¼ 1 is correct and in addition the

important case of a single centre of symmetry being occupied

does not involve any approximation. We look forward to a

confrontation of the result to be presented with experiment or,

at least, with a simulation.

4.7.1. Average Friedel intensity with special positions. This

subsection needs to be understood as an adjunct to Appendix

A to take account of atoms in special positions. From

Appendix A, the only terms in the expression for hAi in

(4) that are affected by atoms in special positions are hC2
Ci

and hC00 2C i. Allowing for the special positions CC ¼

2
PðQ�WÞ=2

j¼1 fjcj þ
PQ

j¼Q�Wþ1 fjcj 	 CCg þ CCs, where CCg is the

contribution of the general positions and CCs that of the

special ones, we have

hC2
Ci ¼ hC

2
Cgi þ hC

2
Csi þ 2hCCgCCsi

¼ 4
PðQ�WÞ=2

j¼1

PðQ�WÞ=2

k¼1

fj fkhcjcki þ
PQ

j¼Q�Wþ1

PQ
k¼Q�Wþ1

fj fkhcjcki

þ 4
PðQ�WÞ=2

j¼1

PQ
k¼Q�Wþ1

fj fkhcjcki:

For the first double summation in hC2
Ci, hc

2
j i ¼

1
2 and hcjcki ¼ 0,

j 6¼ k; for the second double summation in hC2
Ci,

hc2
j i ¼ ð�1Þ2 ¼ 1 and hcjcki � 0, j 6¼ k; the third term in hC2

Ci

vanishes since j never equals k, and hcjcki ¼ hcjihcki ¼ 0. We

thus have hC2
Ci � 2

PðQ�WÞ=2
j¼1 f 2

j þ
PQ

j¼Q�Wþ1 f 2
j ¼

PQ
j¼1 f 2

j , so
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hC2
Ci, and by comparison hC002C i, are unchanged from the

analysis of Appendix A. Hence we obtain hAi �PN
j¼1 f 2

j þ
PN

j¼1 f 002j even if there are W atoms located on the

special positions, the only very slight modification from

Appendix A being the replacement of the equality by an

approximate equality.

4.7.2. Mean-square Friedel intensity difference with
special positions. This subsection needs to be understood as

an adjunct to Appendix A to take account of atoms in special

positions. One writes (6) as

hD2i=16 ¼ hC2
CihS

002i þ hC2
NS002i þ hS2ihC002C i þ hS

2C002N i

� 2hCCC00CihSS00i � 2hCNSC00NS00i;

in which the only averages that can be affected by atoms in

special positions are those containing hC2
Ci, hC

002
C i and hCCC00Ci.

We have already shown in x4.7.1 that hC2
Ci and, by inspection,

hC002C i are approximately unchanged by the presence of atoms

occupying special positions. By inspection it is also clear that

hCCC00Ci is unmodified as the averaging in the above three

quantities takes place only over the trigonometric terms, and is

unaffected by the particular scattering-factor components

concerned. All in all, hD2i is approximately unchanged by the

presence of atoms in special positions.

5. Weak reflections

In resolving centrosymmetric–non-centrosymmetric ambi-

guities in the determination of a crystal structure, Marsh

(1981) has argued forcibly concerning the importance of

retaining weak reflections. In this he follows the more general

opinion of Hirshfeld & Rabinovich (1973) on the cosmetic

effect of ignoring weak reflections and the introduction of

systematic errors or bias into structural parameters. An

interesting modern experimental demonstration that weak

reflections are indeed critical in such circumstances is to be

found in the work of Walker et al. (1999). In the latter, the

crystal structure of emycin E was known to be non-centro-

symmetric since the compound was a mixture of two epimers

having the same chirality at C(3) and opposite chirality at

C(12), but which was nevertheless very close indeed to being

centrosymmetric. Walker et al. (1999) noted that refinement in

a centrosymmetric space group led to the observed intensities

of the weak reflections being systematically larger than the

corresponding model intensities whereas this was not the case

for refinement in the correct non-centrosymmetric space

group. If weak reflections are so important in resolving

centrosymmetric–non-centrosymmetric ambiguities, it is

tempting to imagine that they might also be critical in choosing

a subset of reflections that have maximal Friedel intensity

differences. However, we know of no report in the literature

suggesting that weak reflections are of particular importance

in obtaining significant Friedel differences. Consequently, we

analyse the two cases to understand better their similarities

and differences.

Following Marsh (1981), the appropriate intensity differ-

ence to calculate for reflection h of a pseudo-centrosymmetric

structure is that between the intensity corresponding to the

electron density �(r) of the whole unit-cell contents and that

corresponding to the centrosymmetric component of the real

electron density, �c(r) = 1
2[�(r) + �(�r)], for an inversion point

at the origin. We shall call this a Marsh difference intensity

denoted by M(h). Using the notation and results of x2, the

structure factor F(h) of reflection h corresponding to the

electron density �(r) is FðhÞ ¼ C þ iC00 þ iS� S00 and its

component corresponding to �c(r) is �ðhÞ ¼ C þ iC00. For the

corresponding intensities, we set MðhÞ ¼ AðhÞ � j�ðhÞj2 ¼
S2 þ S002. Examination of this equation shows that there is no

functional relationship between M(h) and A(h) but that the

Marsh difference intensity is always positive or zero, within

the limits 0 � MðhÞ � AðhÞ or 0 � MðhÞ=AðhÞ � 1, as

confirmed by Walker et al. (1999) for the weak reflections in

emycin E. For a pseudo-centrosymmetric structure, M(h) will

in general be small, so it is likely to be of the same magnitude

for a weak reflection as for a strong reflection and the largest

values of M(h)/A(h) occur for weak reflections. By way of

comparison, we find from x2 that the Friedel intensity differ-

ence DðhÞ ¼ 4ðC00S� CS00Þ with hDi ¼ 0. Again, for D(h),

there is no functional relationship between D(h) and A(h),

but D(h) may be positive or negative within the limits

�2AðhÞ � DðhÞ � þ2AðhÞ or �1 � DðhÞ=2AðhÞ � þ1. D(h)

is in general small [like M(h) for a pseudo-centrosymmetric

structure] and D(h)/2A(h) is largest for weak reflections. The

important difference between M(h) and D(h) is that the

former is zero or positive whereas the latter may take both

positive and negative values with a mean value of zero.

It seems to be commonly accepted that the importance of

weak reflections in centrosymmetric–non-centrosymmetric

ambiguities is due to M(h)/A(h) being largest for weak

reflections. In this respect, we need to make two comments.

Firstly, M(h)/A(h) is large for weak reflections not because

M(h) is large but because A(h) is small. Secondly, in the

calculation of normalized structure factors (for intensity

statistical tests and direct methods of structure solution) and

least-squares refinement of structural parameters, one uses

intensities as such and not relative to some average or

expected value. The paper of McCandlish et al. (1975) on the

statistics of derived intensities is of the utmost importance in

this respect. They showed that the need to bring data to a

common scale engenders a relative dependence on the

uncertainties or systematic errors in the data with respect to

the value of the datum.

So it seems to us that the most plausible explanation for the

importance of weak reflections in resolving centrosymmetric–

non-centrosymmetric ambiguities runs as follows. M(h) is

always positive and, for both the calculation of E(h) and the

least-squares refinement of structural parameters, a scale

factor is used to bring the observed and model intensities to

the same scale. The strong/medium reflections will dominate

the determination of the scale factor because they are

measured more accurately and because residuals between

observed and model values tend to be proportional to the

observed value. Consequently, the value obtained for the scale

factor is biased because M(h) is always positive. This bias in
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the scale factor leads to residuals on the strong/medium

reflections having a mean of zero, i.e. part of the effect of M(h)

is absorbed into the biased scale factor. However, for the weak

reflections this is not the case because the bias in the scale

factor only produces a small effect proportional to the inten-

sity of the weak reflection, i.e. next to none of the contribution

of M(h) to a weak reflection is lost by a biased scale factor.

Consequently, weak reflections remain the key to resolving

centrosymmetric–non-centrosymmetric ambiguities even in

the presence of a biased scale factor.

On the other hand, for Friedel differences, hDðhÞi is zero

and consequently there is no mechanism for producing a

biased scale factor. Consequently, weak reflections have no

particular importance in choosing reflections with a significant

Friedel intensity difference.

The problem of weak reflections can also be regarded from

the point of view of intensity statistics. Briefly, if Wilson’s

(1949) p.d.f.s are applicable and the structure is centrosym-

metric, the p.d.f. is a simple Gaussian and the greatest prob-

abilities of occurrence are assigned to weak reflections. If the

exact p.d.f. is used, there is still a finite probability assigned to

the weak reflections. If, however, weak reflections are omitted,

the p.d.f. – whether asymptotic (Wilson, 1949) or exact

(Shmueli et al., 1984) – is distorted towards appearing more

acentric and indicates a nearly or completely non-centro-

symmetric structure. The not infrequent omission of inten-

sities smaller than 3 standard uncertainties may be a source of

such problems.

6. Software

A spreadsheet application1 has been written for Microsoft

Excel2 2003 running under Microsoft Windows XP2. Using

(10), the spreadsheet calculates the value of 104� for the two

cases of all atoms arranged non-centrosymmetrically, labelled

Friedif, and allowing for the centrosymmetric substructure,

labelled Friedif-centro. The real part of the resonant atomic

scattering factor and atomic displacement parameters are not

taken into account. The spreadsheet also calculates the

molecular mass and 104hj�Fji=hFi of Girard et al. (2003)

labelled Rescat. The calculation is undertaken for the wave-

lengths of Cu K� and Mo K� using values of f 00 given by

Creagh (2004). The user has to enter the total elemental

composition of the compound in the form of its stoichiometry

and optionally the elemental composition of the centrosym-

metric substructure.

7. Concluding remarks

An important and essential feature concerning the difference

in intensity between Friedel opposites as displayed by (7) is

that the effect is one of contrast. One needs both atoms with

significant resonant scattering and atoms with a small resonant

effect to produce the largest measurable effects. Another

surprising result from (7) concerns arrangements of atoms that

do not affect the differences between Friedel opposites. Non-

centrosymmetric crystal structures of chemical elements

produce no difference in intensity between Friedel opposites.

In like manner, a centrosymmetric arrangement of identical

resonant scatterers in an otherwise non-centrosymmetric

structure does not diminish the mean-square Friedel intensity

difference.

In x5, we have confirmed the underlying theoretical

soundness of Marsh’s demonstration of the importance of

weak reflections in resolving centrosymmetric–non-centro-

symmetric ambiguities and the mechanism by which their

model intensities are biased. Moreover, Walker et al. (1999)

have provided convincing experimental confirmation of this

effect. From this and other work, we judge that it would be

opportune for publications of crystal structures solved as

being centrosymmetric to contain statistics on weak reflections

such as those presented by Walker et al. (1999). If these

statistics show a marked tendency for the observed intensities

of weak reflections to be larger than the model ones, the

structure may in fact be non-centrosymmetric. A typical

example would be that of a structure, solved as being

centrosymmetric and composed of a racemate, perhaps

disordered, which is in fact a non-centrosymmetric chiral

crystal structure of an enantiopure compound, probably

ordered. Physicochemical characterization of the ‘racemate’ in

the bulk and in the single crystal used for the diffraction

experiment provides additional evidence as to the real state of

the crystal structure.

The application of (7) and (8) to the prediction of the value

of the standard uncertainty of the Flack parameter, as in Flack

et al. (2006), is under way.

APPENDIX A
Derivation of the average intensity and mean-square
difference intensity of Friedel opposites

Following the definitions in x2, we shall first derive the average

intensity of Friedel opposites. The starting equation is

hAi ¼ hC2i þ hC002i þ hS2i þ hS002i

¼ hC2
Ci þ hC

2
Ni þ 2hCCCNi þ hC

002
C i þ hC

002
N i

þ 2hC00CC00Ni þ hS
2
Ni þ hS

002
N i

but hCCCNi and hC00CC00Ni vanish since they are products of odd

independent summations. We now retain and simplify the non-

vanishing summations:

hC2
Ci ¼ 4

PQ=2

j¼1

f 2
j hc

2
j i ¼

PQ
j¼1

f 2
j ð11Þ

hC002C i ¼ 4
PQ=2

j¼1

f 002j hc
2
j i ¼

PQ
j¼1

f 002j ð12Þ
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hC2
Ni ¼

PN
j¼Qþ1

f 2
j hc

2
j i ¼

1
2

PN
j¼1

f 2
j �

1
2

PQ
j¼1

f 2
j ð13Þ

hC002N i ¼
PN

j¼Qþ1

f 002j hc
2
j i ¼

1
2

PN
j¼1

f 002j �
1
2

PQ
j¼1

f 002j ð14Þ

hS2
Ni ¼

PN
j¼Qþ1

f 2
j hs

2
j i ¼

1
2

PN
j¼1

f 2
j �

1
2

PQ
j¼1

f 2
j ð15Þ

hS002N i ¼
PN

j¼Qþ1

f 002j hs
2
j i ¼

1
2

PN
j¼1

f 002j �
1
2

PQ
j¼1

f 002j ð16Þ

and equations (11) through (16) add up to

hAi ¼
PN
j¼1

ð f 2
j þ f 002j Þ ¼

PN
j¼1

j fj þ if 00j j
2; ð5Þ

in agreement with Wilson’s statistics.

We now turn to the mean-square intensity difference of a

Friedel pair. Starting again from x2, we have

hD2
i=16 ¼ hðCS00 � SC00Þ

2
i ¼ hC2S002i þ hS2C002i � 2hCS00C00Si:

The first term of hD2i=16 is

hC2S002i ¼ hðC2
C þ C2

NÞS
002
N i ¼ hC

2
CihS

002
N i þ hC

2
NS002N i

since CC and S00N are independent. The averages to be calcu-

lated are

hC2
Ci ¼ 4

PQ=2

j¼1

PQ=2

k¼1

fjfkhcjcki ¼ 4
PQ=2

j¼1

f 2
j hc

2
j i ¼

PQ
j¼1

f 2
j ;

hS002N i ¼
PN

l¼Qþ1

PN
m¼Qþ1

f 00l f 00mhslsmi ¼
PN

l¼Qþ1

f 002l hs
2
l i ¼

1
2

PN
l¼Qþ1

f 002l ;

hC2
NS002N i ¼

PN
j¼Qþ1

PN
k¼Qþ1

PN
l¼Qþ1

PN
m¼Qþ1

fjfkf 00l f 00mhcjckslsmi

¼

1
8

PN
l¼Qþ1 f 2

l f 002l for j ¼ k ¼ l ¼ m

1
4

PN
j¼Qþ1

PN
l¼Qþ1 f 2

j f 002l for j ¼ k; l ¼ m; j 6¼ l:

(

The non-vanishing summations in the first term of hD2i=16 are

hC2S002i ¼ 1
2

PQ
j¼1

PN
l¼Qþ1

f 2
j f 002l þ

1
8

PN
l¼Qþ1

f 2
l f 002l þ

1
4

PN
j¼Qþ1

PN
l¼Qþ1

f 2
j f 002l

ð17Þ

with j 6¼ l in the third summation (in the first this is so by

definition). If we follow similar algebraic manipulations, the

non-vanishing summations in the second term of hD2i=16 are

hS2C002i ¼ 1
2

PN
j¼Qþ1

PQ
l¼1

f 2
j f 002l þ

1
8

PN
l¼Qþ1

f 2
l f 002l þ

1
4

PN
j¼Qþ1

PN
l¼Qþ1

f 2
j f 002l

ð18Þ

with j 6¼ l in the third summation, and the non-vanishing

summations in the third term are obtained by decomposing

the third term prior to the averaging and following similar

steps to the above, as

�2hCSC00S00i ¼ � 2
2

PQ
j¼1

PN
k¼Qþ1

fj fk f 00j f 00k �
2
8

PN
k¼Qþ1

f 2
k f 002k

� 2
4

PN
j¼Qþ1

PN
ðk 6¼jÞ¼Qþ1

fj fk f 00j f 00k : ð19Þ

If we now collect the summations from equations (17), (18)

and (19), take care of the dummy indices and rearrange the

summations, the mean-square intensity difference is obtained

as

hD2
i ¼ 8

PQ
j¼1

PN
l¼Qþ1

ð fj f 00l � fl f 00j Þ
2 þ 4

PN
j¼Qþ1

PN
l¼Qþ1

ð fj f 00l � fl f 00j Þ
2:

We omitted l 6¼ j from the last summation since, for j ¼ l,

ðfj f 00l � fl f 00j Þ ¼ 0. If we now replace
PN

l¼Qþ1 withPN
l¼1�

PQ
l¼1, we readily obtain

hD2
i ¼ 4

PN
j¼1

PN
l¼1

ð fj f 00l � fl f 00j Þ
2 � 4

PQ
j¼1

PQ
l¼1

ð fj f 00l � fl f 00j Þ
2: ð7Þ

APPENDIX B
Derivation of the average normalized intensity and the
mean-square difference normalized intensity of Friedel
opposites

Analogously to the analysis in x2, the complex normalized

structure factor EðhÞ can be written as EðhÞ ¼ ECðhÞ þ ENðhÞ,

where

ECðhÞ ¼ 2
PQ=2

j¼1

ðnj þ in00j Þcj; ENðhÞ ¼
PN

j¼Qþ1

ðnj þ in00j Þðcj þ isjÞ

and the non-resonant and imaginary resonant parts of the

normalized scattering factor are given, for space group P1, by

nj ¼
fj

ð�Þ1=2
; n00j ¼

f 00j

ð�Þ1=2
; � ¼

XN

j¼1

jfj þ if 00j j
2:

The trigonometric terms cj and sj have the same meaning as in

x2. If we now define

�C ¼ 2
PQ=2

j¼1

njcj; �N ¼
PN

j¼Qþ1

njcj; � ¼ �C þ �N ¼
PN
j¼1

njcj;

�00C ¼ 2
PQ=2

j¼1

n00j cj; �00N ¼
PN

j¼Qþ1

n00j cj; �00 ¼ �00C þ �
00
N ¼

PN
j¼1

n00j cj;

�N ¼
PN

j¼Qþ1

njsj; �00N ¼
PN

j¼Qþ1

n00j sj;

the normalized structure factor of reflection h can be brought

to the form

EðhÞ ¼ � þ i�00 þ i�� �00 ð20Þ

while

Eð�hÞ ¼ � þ i�00 � i�þ �00; ð21Þ

in analogy with the development in x2. The corresponding

normalized intensities are zðhÞ ¼ jEðhÞj2 and

zð�hÞ ¼ jEð�hÞj2. If we now make use of equations (20) and
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(21), it follows, after some straightforward algebra, that the

mean normalized intensity of a Friedel pair h and �h is

AzðhÞ ¼
1
2 ½zðhÞ þ zð�hÞ� ¼ �2 þ �2 þ �002 þ �002 ð22Þ

and that the difference between the normalized intensities of

the Friedel opposites is

DzðhÞ ¼ zðhÞ � zð�hÞ ¼ 4ð�00�� ��00Þ: ð23Þ

The evaluation of the required averages now follows exactly

Appendix A if we identify � with C and � with S etc.

The average Friedel normalized intensity is obtained as

hAzi ¼
PN
j¼1

jnj þ in00j j
2 ¼ 1; ð24Þ

which is just the well known second moment of jEðhÞj:
Finally, the mean square difference of normalized inten-

sities of Friedel opposites is obtained by an algebra exactly

analogous to that presented in Appendix A. The result is

hD2
zi ¼ 4

PN
j¼1

PN
l¼1

ðnjn
00
l � nln

00
j Þ

2 � 4
PQ
j¼1

PQ
l¼1

ðnjn
00
l � nln

00
j Þ

2: ð25Þ

It is analogous to equation (7) in the text but thanks to the

expression of (25) in terms of normalized scattering factors its

dependence on the scattering angle, via Debye–Waller and

trigonometric structure factors, is weaker than that of hD2i. In

a similar manner, we can obtain the ratio �z ¼ hD
2
zi

1=2=hAzi as

�z ¼ 2
PN
j¼1

PN
l¼1

ðnjn
00
l � nln

00
j Þ

2 �
PQ
j¼1

PQ
l¼1

ðnjn
00
l � nln

00
j Þ

2

" #1=2

; ð26Þ

since, as shown in (24), the average hAzi equals unity. This is

analogous to equation (8) in the text, there expressed in terms

of conventional scattering factors. Moreover, by back-substi-

tution of nj and n00j , from their definitions, in (26) it can be

readily shown that �z ¼ � ¼ hD
2
zi

1=2.
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